Activation of Cl- channels by human chorionic gonadotropin in luteinized granulosa cells of the human ovary modulates progesterone biosynthesis.
نویسندگان
چکیده
Chloride permeability pathways and progesterone (P4) secretion elicited by human chorionic gonadotropin (hCG) in human granulosa cells were studied by electrophysiological techniques and single-cell volume, membrane potential and Ca2+i measurements. Reduction in extracellular Cl(-) and equimolar substitution by the membrane-impermeant anions glutamate or gluconate significantly increased hCG-stimulated P4 accumulation. A similar result was achieved by exposing the cells to hCG in the presence of a hypotonic extracellular solution. Conversely, P4 accumulation was drastically reduced in cells challenged with hCG exposed to a hypertonic solution. Furthermore, conventional Cl(-) channel inhibitors abolished hCG-mediated P4 secretion. In contrast, 25-hydroxycholesterol-mediated P4 accumulation was unaffected by Cl(-) channel blockers. In human granulosa cells, hCG triggered the activation of a tamoxifen-sensitive outwardly rectifying Cl(-) current comparable to the volume-sensitive outwardly rectifying Cl(-) current. Exposure of human granulosa cells to hCG induced a rapid 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid-sensitive cell membrane depolarization that was paralleled with an approximately 20% decrease in cell volume. Treatment with hCG evoked oscillatory and nonoscillatory intracellular Ca2+ signals in human granulosa cells. Extracellular Ca2+ removal and 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid abolished the nonoscillatory component while leaving the Ca2+ oscillations unaffected. It is concluded that human granulosa cells express functional the volume-sensitive outwardly rectifying Cl(-) channels that are activated by hCG, which are critical for plasma membrane potential changes, Ca2+ influx, and P4 production.
منابع مشابه
Inhibition of progesterone production in human luteinized granulosa cells treated with LXR agonists.
Progesterone production by luteal cells is dependent on the supply of cholesterol by lipoproteins. The aim of this study was to determine whether the liver X receptors (LXRs) contribute to cholesterol homeostasis and progesterone secretion in human luteinized granulosa cells. Cells were isolated from follicular aspirates of patients undergoing in vitro fertilization. Luteinization was induced b...
متن کاملSteroidogenesis in luteinized granulosa cell cultures varies with follicular priming regimen.
During follicular development, a co-ordinated gonadotrophin and endocrine environment is believed to be essential for normal function of the resulting corpus luteum. Whether differences in the gonadotrophins used to promote follicular development can have lasting effects on granulosa cells after they have undergone luteinization and culture, remains to be studied. We measured steroid production...
متن کاملPotential role of hCG in apoptosis of human luteinized granulosa cells
The corpus luteum (CL) forms after ovulation and acts as a temporary endocrine gland that produces progesterone (P4), a hormone that is essential for implantation and maintenance of pregnancy in mammals. In pregnant women, human chorionic gonadotropin (hCG) secreted by the conceptus prevents luteolysis. hCG also increases the survival of cultured human luteinized granulosa cells (hLGCs). To cla...
متن کاملDifferential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis.
The human LH receptor (LHR) plays a key role in luteal function and the establishment of pregnancy through its interaction with the gonadotropins LH and human chorionic gonadotropin. We previously identified four splice variants of the LHR in human luteinized granulosa cells (LGCs) and corpora lutea (CL). Real-time quantitative PCR revealed that expression of the full-length LHR (LHRa) and the ...
متن کاملLeptin inhibits gonadotrophin-stimulated granulosa cell progesterone production by antagonizing insulin action.
Recent evidence has demonstrated that expression of leptin and leptin receptors is expected in the human ovary, and that leptin alters ovarian steroidogenesis in animal models. This study was designed to determine whether leptin modulates basal, gonadotrophin-, and insulin-stimulated progesterone production by human luteinized granulosa cells (GC). GC were recovered from follicular aspirates ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 149 9 شماره
صفحات -
تاریخ انتشار 2008